Guía para el sustentante

Examen General para el Egreso de la Licenciatura en Ingeniería Mecánica Eléctrica

EGEL-IME

Centro Nacional de Evaluación para la Educación Superior, A. C.

Fecha de última actualización: 28 de septiembre de 2011
Guía para el sustentante
Examen General para el Egreso de la Licenciatura
en Ingeniería Mecánica Eléctrica (EGEL-IME)

D.R. © 2011
Centro Nacional de Evaluación
para la Educación Superior, A. C. (Ceneval)

Cuarto edición
Directorio

Dirección General
Mtro. Rafael Vidal Uribe

Dirección General Adjunta de los Exámenes Generales para el Egreso de la Licenciatura (EGEL)
Lic. Jorge Hernández Uralde

Dirección del Área de las Ingenierías y las Tecnologías
M. en C. Laura Delgado Maldonado

Coordinación del Examen General para el Egreso de la Licenciatura en Ingeniería Mecánica Eléctrica (EGEL-IME)
Ing. Arturo Valverde Merlin
Índice

Presentación .. 6
Propósito y alcance del EGEL-IME ... 6
Destinatarios del EGEL-IME ... 7
¿Cómo se construye el EGEL-IME? .. 7
Características del EGEL-IME .. 8
¿Qué evalúa el EGEL-IME? ... 8

Estructura general del EGEL-IME por áreas y subáreas .. 9
Temas ... 10

Examen en línea ... 19
Cómo ingresar a su examen ... 19
Cómo responder los reactivos del examen ... 23
Cómo desplazarse dentro del examen ... 26
Cómo marcar o resaltar una pregunta en la cual tiene duda 28
Cómo consultar el tiempo disponible ... 28
Cómo interrumpir la sesión del examen ... 29
Cómo terminar la sesión del examen ... 31

Examen en lápiz y papel .. 33
Hoja de respuestas .. 33
Cuadernillo de preguntas ... 34
Portada del cuadernillo ... 34
Instrucciones para contestar la prueba .. 35
Materiales de consulta permitidos ... 36
¿Qué tipo de preguntas se incluyen en el examen? ... 36

Registro para presentar el examen ... 42
Requisitos ... 42
Cuestionario de contexto ... 43
Número de folio .. 43

Condiciones de aplicación ... 44
Distribución de tiempo por sesión ... 44
Recomendaciones útiles para presentar el examen .. 44
Procedimiento por seguir al presentar el examen ... 44
Reglas durante la administración del instrumento ... 45
Sanciones ... 45

Resultados .. 46
Reporte de resultados ... 46
Descripción de los niveles de desempeño ... 47
Nivel de desempeño satisfactorio .. 47
Nivel de desempeño sobresaliente .. 47
Testimonios de desempeño .. 47
Consulta y entrega .. 49

Recomendaciones y estrategias de preparación para el examen 49
¿Cómo prepararse para el examen? ... 49

Cuerpos colegiados ... 52
Consejo Técnico ... 52
Comité Académico .. 53
Presentación

El Centro Nacional de Evaluación para la Educación Superior, A.C. (Ceneval) es una asociación civil que ofrece, desde 1994, servicios de evaluación a cientos de escuelas, universidades, empresas, autoridades educativas, organizaciones de profesionales y de otras instancias particulares y gubernamentales. Su actividad principal es el diseño y la aplicación de instrumentos de evaluación. Su misión consiste en proveer información confiable sobre los aprendizajes que logran los estudiantes de distintos niveles educativos.

En el terreno de la educación, como en todas las actividades humanas, la evaluación es el proceso que permite valorar los aciertos, reconocer las fallas y detectar potencialidades. Contar con información válida y confiable garantiza tomar decisiones acertadas.

Esta Guía está dirigida a quienes sustentarán el Examen General para el Egreso de la Licenciatura en Ingeniería Mecánica Eléctrica (EGEL-IME). Su propósito es ofrecer información que permita a los sustentantes familiarizarse con las principales características del examen, los contenidos que se evalúan, el tipo de preguntas (reactivos) que encontrarán en el examen, así como con algunas sugerencias de estudio y de preparación para presentar el examen.

Se recomienda al sustentante revisar con detenimiento la Guía completa y recurrir a ella de manera permanente durante su preparación y para aclarar cualquier duda sobre aspectos académicos, administrativos o logísticos en la presentación del EGEL-IME.

Propósito y alcance del EGEL-IME

El propósito del EGEL-IME es identificar si los egresados de la licenciatura en Ingeniería Mecánica Eléctrica cuentan con los conocimientos y habilidades necesarios para iniciarse eficazmente en el ejercicio de la profesión. La información que ofrece permite al sustentante:

- Conocer el resultado de su formación en relación con un estándar de alcance nacional mediante la aplicación de un examen confiable y válido, probado con egresados de instituciones de educación superior (IES) de todo el país.
- Conocer el resultado de la evaluación en cada área del examen, por lo que puede ubicar aquéllas donde tiene un buen desempeño, así como aquéllas en las que presenta debilidades.
- Beneficiarse curricularmente al contar con un elemento adicional para integrarse al mercado laboral.

A las instituciones de educación superior (IES) les permite:

- Incorporar el EGEL-IME como un medio para evaluar y comparar el rendimiento de sus egresados con un parámetro nacional, además del uso del instrumento como una opción para titularse.
- Contar con elementos de juicios válidos y confiables que apoyen los procesos de planeación y evaluación curricular que les permita emprender acciones capaces de mejorar la formación académica de sus egresados, adecuando planes y programas de estudio.
- Aportar información a los principales agentes educativos (autoridades, organismos acreditadores, profesores, estudiantes y sociedad en general) acerca del estado que
guardan sus egresados respecto de los conocimientos y habilidades considerados necesarios para integrarse al campo laboral.

A los empleadores y a la sociedad les permite:

- Conocer con mayor precisión el perfil de los candidatos a contratar y de los que se inician en su ejercicio profesional, mediante elementos validos, confiables y objetivos de juicio, para contar con personal de calidad profesional, acorde con las necesidades nacionales.

Destinatarios del EGEL-IME

Está dirigido a los egresados de la licenciatura en Ingeniería Mecánica Eléctrica, que hayan cubierto el 100% de los créditos, estén o no titulados, y en su caso a estudiantes que cursan el último semestre de la carrera, siempre y cuando la institución formadora así lo solicite.

El EGEL-IME se redactó en idioma español, por lo que está dirigido a individuos que puedan realizar esta evaluación bajo dicha condición lingüística. Los sustentantes con necesidades físicas especiales serán atendidos en función de su requerimiento especial.

¿Cómo se construye el EGEL-IME?

Con el propósito de asegurar pertinencia y validez en los instrumentos de evaluación, el Ceneval se apoya en Consejos Técnicos integrados por expertos en las áreas que conforman la profesión, los cuales pueden representar a diferentes instituciones educativas, colegios o asociaciones de profesionistas, instancias empleadoras del sector público, privado y de carácter independiente. Estos Consejos Técnicos funcionan de acuerdo con un reglamento y se renuevan periódicamente.

El contenido del EGEL-IME es el resultado de un complejo proceso metodológico, técnico y de construcción de consensos en el Consejo Técnico y en sus Comités Académicos de apoyo en torno a:

1. La definición de principales funciones o ámbitos de acción del profesional
2. La identificación de las diversas actividades que se relacionan con cada ámbito
3. La selección de las tareas indispensables para el desarrollo de cada actividad
4. Los conocimientos y habilidades requeridos para la realización de esas tareas profesionales
5. La inclusión de estos conocimientos y habilidades en los planes y programas de estudio vigentes de la licenciatura en Ingeniería Mecánica Eléctrica

Lo anterior tiene como referente fundamental la opinión de centenares de profesionistas activos en el campo de la Ingeniería Mecánica Eléctrica, formados con planes de estudios diversos y en diferentes instituciones, quienes (en una encuesta nacional) aportaron su punto de vista respecto a:

1. Las tareas profesionales que se realizan con mayor frecuencia
2. El nivel de importancia que estas tareas tienen en el ejercicio de su profesión
3. El estudio o no, durante la licenciatura, de los conocimientos y habilidades que son necesarios para la realización de estas tareas
Características del EGEL-IME

Es un instrumento de evaluación que puede describirse como un examen con los siguientes atributos:

<table>
<thead>
<tr>
<th>Atributo</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>Especializado para la carrera</td>
<td>Se orienta a evaluar los conocimientos y habilidades que son específicos de la formación profesional del licenciado en Ingeniería Mecánica Eléctrica. No incluye conocimientos y habilidades profesionales genéricos o transversales.</td>
</tr>
<tr>
<td>profesional de Ingeniería Mecánica</td>
<td></td>
</tr>
<tr>
<td>Eléctrica</td>
<td></td>
</tr>
<tr>
<td>De alcance nacional</td>
<td>Considera los aspectos de formación que son esenciales en la licenciatura en Ingeniería Mecánica Eléctrica para iniciarse en el ejercicio de la profesión en el país. No está referido a un currículo en particular.</td>
</tr>
<tr>
<td>Estandarizado</td>
<td>Cuenta con reglas fijas de diseño, elaboración, aplicación y calificación.</td>
</tr>
<tr>
<td>Criterial</td>
<td>Los resultados de cada sustentante se comparan contra un patrón o estándar de desempeño preestablecido por el Consejo Técnico del examen.</td>
</tr>
<tr>
<td>De máximo esfuerzo</td>
<td>Permite establecer el nivel de rendimiento del sustentante, sobre la base de que éste hace su mejor esfuerzo al resolver los reactivos de la prueba.</td>
</tr>
<tr>
<td>Objetiva</td>
<td>Tiene criterios de calificación unívocos y precisos, lo que permite su automatización.</td>
</tr>
<tr>
<td>Sensible a la instrucción</td>
<td>Evalúa resultados de aprendizaje del programa de formación profesional de la licenciatura en Ingeniería Mecánica Eléctrica, los cuales son una consecuencia de la experiencia educativa institucionalmente organizada.</td>
</tr>
</tbody>
</table>

¿Qué evalúa el EGEL-IME?

El examen está organizado en áreas, subáreas y aspectos por evaluar. Las áreas corresponden a ámbitos profesionales en los que actualmente se organiza la labor del ingeniero mecánico electricista. Las subáreas comprenden las principales actividades profesionales de cada uno de los ámbitos profesionales referidos. Por último, los aspectos por evaluar identifican los conocimientos y habilidades necesarios para realizar tareas específicas relacionadas con cada actividad profesional.
Estructura general del EGEL-IME por áreas y subáreas

<table>
<thead>
<tr>
<th>Áreas/Subáreas</th>
<th>% en el examen</th>
<th>Número de reactivos</th>
<th>Distribución de reactivos por sesión</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1a.</td>
<td>2a.</td>
</tr>
<tr>
<td>A. Diseño de elementos y sistemas mecánicos</td>
<td>20.6</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>1. Necesidades funcionales de los elementos y sistemas mecánicos</td>
<td>6.1</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>2. Planteamiento del problema técnico a partir de las necesidades y generación de las posibles soluciones sustentables</td>
<td>6.7</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>3. Comprobación de las ideas de solución a través de un modelo experimental o teórico</td>
<td>3.3</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>4. Factibilidad de fabricación de sistemas mecánicos</td>
<td>4.4</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>B. Procesos de producción</td>
<td>14.4</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>1. Clasificación de procesos de manufactura</td>
<td>6.1</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>2. Mantenimiento industrial</td>
<td>1.7</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3. Diseño de procesos de manufactura</td>
<td>3.3</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>4. Diseño de sistemas de calidad en los procesos de manufactura</td>
<td>3.3</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>C. Operación de sistemas electromecánicos</td>
<td>13.3</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>1. Proyectos de ahorro de energía</td>
<td>7.2</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>2. Supervisión de la operación y funcionamiento de los equipos transformadores de energía</td>
<td>2.8</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>3. Optimización de sistemas de transferencia de energía</td>
<td>3.3</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>D. Sistemas de automatización y control</td>
<td>21.1</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>1. Elementos que conforman un sistema de automatización y control</td>
<td>6.1</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>2. Selección de sistemas para control por relevadores</td>
<td>2.2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3. Desarrollo de sistemas neumáticos e hidráulicos</td>
<td>3.3</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>4. Desarrollo de sistemas de automatización y control analógico y digital</td>
<td>4.4</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>5. Aplicación de normas de medición y control</td>
<td>3.3</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>6. Implementación de sistemas de control</td>
<td>1.7</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>E. Sistemas eléctricos</td>
<td>18.3</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>1. Selección de elementos para sistemas eléctricos de potencia</td>
<td>3.3</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>2. Diseño de redes para distribución y subestaciones eléctricas</td>
<td>5.0</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>3. Diseño y operación de sistemas eléctricos</td>
<td>10.0</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>F. Mantenimiento de sistemas electromecánicos</td>
<td>12.2</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>1. Componentes de los sistemas electromecánicos</td>
<td>3.9</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>2. Programas de mantenimiento para el equipo electromecánico industrial</td>
<td>5.6</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>3. Programas de mantenimiento para sistemas de distribución</td>
<td>2.8</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

*TTotal de reactivos para determinar la calificación: 180, 87, 93

*Estructura aprobada por el Consejo Técnico, en la reunión celebrada el 7 y 8 de enero de 2010. Adicionalmente el examen incluye entre el 10 y el 20% de reactivos piloto que no se utilizan para calificar.
Guía para el sustentante del examen general para el egreso de la licenciatura en Ingeniería Mecánica Eléctrica

Temas

A continuación se señalan los temas en cada área y subárea en las que se organiza el examen. Cada uno de estos temas está relacionado con los conocimientos y habilidades que requiere poseer el egresado en Ingeniería Mecánica Eléctrica para iniciarse en el ejercicio profesional.

A. Diseño de elementos y sistemas mecánicos

A1. Necesidades funcionales de los elementos y sistemas mecánicos
Esta subárea procura medir que el sustentante es capaz de:

- Identificar los diferentes elementos de los sistemas mecánicos
- Establecer las características de los elementos mecánicos necesarios para su aplicación
- Definir información técnica para aplicarla a los diseños mecánicos

A2. Planteamiento del problema técnico a partir de las necesidades y generación de las posibles soluciones sustentables
Esta subárea procura medir que el sustentante es capaz de:

- Plantear la solución del problema técnico mediante un diagrama
- Determinar las interrelaciones entre las funciones del sistema mecánico de solución
- Seleccionar una propuesta sustentable con base en las necesidades técnicas
- Seleccionar componentes que cumplan con las funciones del sistema mecánico de solución

A3. Comprobación de las ideas de solución a través de un modelo experimental o teórico
Esta subárea procura medir que el sustentante es capaz de:

- Seleccionar materiales y componentes con base en los cálculos (estáticos, cinemáticos, cinéticos y de resistencias) de acuerdo con las normas y especificaciones correspondientes
- Elaborar modelos y construir prototipos para visualizar las funciones del sistema mecánico
- Generar los planos de definición para construir el prototipo

A4. Factibilidad de fabricación de sistemas mecánicos
Esta subárea procura medir que el sustentante es capaz de:

- Proponer los procesos de manufactura
- Generar un listado de materiales y componentes
- Optimizar el diseño del sistema mecánico
- Interpretar los planos de fabricación
Bibliografía sugerida

B. Procesos de producción

B1. Clasificación de procesos de manufactura

Esta subárea procura medir que el sustentante es capaz de:

- Identificar los procesos de producción y de manufactura en el área de trabajo
- Identificar los diferentes elementos que conforman los procesos de producción y de manufactura
- Identificar los parámetros de funcionamiento de los elementos de producción y de manufactura
- Elaborar hojas de procesos de manufactura

B2. Mantenimiento industrial

Esta subárea procura medir que el sustentante es capaz de:

- Definir el tipo de mantenimiento necesario para la maquinaria y equipo
- Elaborar programas de mantenimiento

B3. Diseño de procesos de manufactura

Esta subárea procura medir que el sustentante es capaz de:

- Identificar la secuencia de operaciones, distribución de planta y procesos de manufactura
- Identificar los cambios que propicien mejora sustancial en los procesos de manufactura
• Elaborar programas de necesidades y capacidades de producción

B4. Diseño de sistemas de calidad en los procesos de manufactura
Esta subárea procura medir que el sustentante es capaz de:

• Identificar la normatividad aplicable en el aseguramiento de la calidad en los procesos de manufactura
• Desarrollar procesos de manufactura en conformidad con las normas aplicables
• Aplicar sistemas de calidad para el apoyo de la manufactura

Bibliografía sugerida

C. Operación de sistemas electromecánicos

C1. Proyectos de ahorro de energía
Esta subárea procura medir que el sustentante es capaz de:

- Identificar necesidades técnicas de diferentes aplicaciones de la transformación y transferencia de energía: equipos térmicos, eléctricos, hidráulicos, hidráulicos de potencia y neumáticos
- Seleccionar alternativas de solución para el mejor aprovechamiento de la energía
- Identificar la normatividad aplicable para el diseño de los equipos transformadores de energía
- Evaluar las propuestas de solución para el mejor aprovechamiento de la energía mediante técnicas de laboratorio

C2. Supervisión de la operación y funcionamiento de los equipos transformadores de energía
Esta subárea procura medir que el sustentante es capaz de:

- Interpretar la información técnica de gráficas de funcionamiento de equipos
- Calcular los parámetros de operación de equipo electromecánico

C3. Optimización de sistemas de transferencia de energía
Esta subárea procura medir que el sustentante es capaz de:

- Determinar los parámetros para el funcionamiento óptimo de los sistemas de transferencia de energía: mecánicos, térmicos, hidráulicos, hidráulicos de potencia y neumáticos
- Implementar tecnología para el desarrollo sustentable en los sistemas de transferencia de energía

Bibliografía sugerida

D. Sistemas de automatización y control

D1. Elementos que conforman un sistema de automatización y control
Esta subárea procura medir que el sustentante es capaz de:

- Identificar la simbología, nomenclatura y terminología de los elementos de medición y control en la automatización
- Identificar el funcionamiento de los elementos de medición y control (sensores, transductores y actuadores)

D2. Selección de sistemas para control por relevadores
Esta subárea procura medir que el sustentante es capaz de:

- Identificar los elementos eléctricos de control convencional (relevadores y contactores)
- Identificar la simbología del control por relevadores de acuerdo con la normatividad vigente
- Seleccionar diagramas y planos de los sistemas de control por relevadores
- Determinar los elementos de control convencional para máquinas eléctricas

D3. Desarrollo de sistemas neumáticos e hidráulicos
Esta subárea procura medir que el sustentante es capaz de:

- Identificar los elementos de un sistema hidráulico y neumático por medio de su simbología
- Determinar características de los componentes en sistemas hidráulicos y neumáticos de acuerdo con su aplicación
- Desarrollar circuitos hidráulicos y neumáticos de acuerdo con necesidades específicas

D4. Desarrollo de sistemas de automatización y control analógico y digital
Esta subárea procura medir que el sustentante es capaz de:
Identificar las técnicas para implementar un sistema de automatización y control
Identificar técnicas de sistemas de automatización, de control y sus parámetros
Sintonizar los controladores de un sistema de lazo cerrado
Determinar el error en estado estacionario con base en criterios de control

D5. Aplicación de normas de medición y control
Esta subárea procura medir que el sustentante es capaz de:

- Implementar la Norma Oficial Mexicana vigente respecto a la Ley de Metrología y Normalización
- Diseñar sistemas básicos de medición y control de acuerdo con la normatividad vigente
- Implementar las normas de seguridad del funcionamiento del proceso

D6. Implementación de sistemas de control
Esta subárea procura medir que el sustentante es capaz de:

- Seleccionar la técnica apropiada para el control de procesos
- Integrar los sistemas de control de procesos

Bibliografía sugerida

Manuales de estudio y trabajo FESTO y VICKERS.
Manual ABB
Walter N. Alerich, *Control de motores eléctricos*, Diana.
E. Sistemas eléctricos

E1. Selección de elementos para sistemas eléctricos de potencia
Esta subárea procura medir que el sustentante es capaz de:

- Calcular flujos de potencia de los sistemas eléctricos
- Determinar los elementos de línea de transmisión, subestación eléctrica, planta generadora y cuadro de maniobras

E2. Diseño de redes para distribución y subestaciones eléctricas
Esta subárea procura medir que el sustentante es capaz de:

- Elaborar planos y diagramas unifilares
- Calcular sistemas eléctricos
- Calcular las flechas y tensiones en líneas de transmisión
- Identificar los factores de pérdidas en sistemas eléctricos
- Analizar los parámetros para definir la calidad de la energía eléctrica

E3. Diseño y operación de sistemas eléctricos
Esta subárea procura medir que el sustentante es capaz de:

- Operar los tableros de control de los sistemas eléctricos de potencia
- Operar apertura y cierre de cuchillas
- Determinar el sistema de blindaje y aparta rayos
- Corregir el factor de potencia de sistemas eléctricos
- Implementar la regulación de tensión
- Realizar el estudio de cortocircuito
- Calcular la coordinación de protecciones
- Calcular sistemas de tierra
- Diseñar instalaciones eléctricas de acuerdo con normas vigentes

Bibliografía sugerida

ANSI/IEEE STD-141 Red Book, Recommended practice for electric power distribution for industrial plants.
Especificación, Torres para líneas de subtransmisión y transmisión, CFE J1000-50, enero de 2006.
ANSI/IEEE, Guide for safety in AC Substation grounding Std. 80
Luis María Checa, Líneas de transmisión de energía, 1988, Marcombo Boixareu Editores.
NMX-J-098-ANCE, Tensiones eléctricas normalizadas
NMX-J-116-ANCE, Productos eléctricos- transformadores- transformadores de distribución tipo poste y tipo subestación-especificaciones
F. Mantenimiento de sistemas electromecánicos

F1. Componentes de los sistemas electromecánicos
Esta subárea procura medir que el sustentante es capaz de:

- Identificar el principio de funcionamiento de cada elemento del sistema electromecánico
- Identificar los elementos de control, protección e instrumentación de los sistemas electromecánicos
- Elaborar planos y diagramas electromecánicos para la instalación y mantenimiento, con base en la simbología normalizada

F2. Programas de mantenimiento para el equipo electromecánico industrial
Esta subárea procura medir que el sustentante es capaz de:

- Planear las actividades del mantenimiento que el equipo electromecánico requiere
- Identificar los principales componentes de mantenimiento electromecánico
- Seleccionar las herramientas y métodos de diagnóstico para los elementos de sistemas electromecánicos
- Elaborar presupuestos de mantenimiento
- Proponer programas de mantenimiento necesarios
- Proponer acciones de mejora
- Verificar el cumplimiento de las normas de seguridad e higiene
• Proponer criterios de selección para los componentes de los sistemas electromecánicos

F3. Programas de mantenimiento para sistemas de distribución
Esta subárea procura medir que el sustentante es capaz de:

• Realizar pruebas a equipo eléctrico y mecánico
• Analizar los resultados de las pruebas y parámetros para garantizar el funcionamiento adecuado de los equipos y sistemas electromecánicos
• Seleccionar el método de mantenimiento más adecuado para los sistemas electromecánicos instalados

Bibliografía sugerida

Manual de mantenimiento del Westinghouse.

Marks, *Manual del Ingeniero electromecánico*, CECSA.

Reglamento de seguridad e higiene.

Examen en línea

En esta modalidad de examen usted:
- revisará las preguntas (reactivos) en la pantalla de una computadora
- responderá los reactivos seleccionando la opción correcta con el ratón (mouse) de la computadora

Durante el examen en línea podrá realizar las mismas acciones que efectúa en una prueba de lápiz y papel:
- leer y contestar los reactivos en el orden que desea
- marcar un reactivo cuya respuesta desconoce o tiene duda
- regresar a revisar un reactivo
- modificar la respuesta en un reactivo
- visualizar el texto de cada caso o situación

En caso de que usted requiera hacer algún cálculo, el aplicador le proporcionará hojas foliadas para dicho fin. Al finalizar la sesión de examen las deberá regresar al aplicador y no podrá sustraerlas del espacio asignado para la aplicación.

Cómo ingresar a su examen

Al momento de llegar a la sede en la cual presentará el examen, se le asignará una computadora que ha sido configurada para manejar el examen en línea del Ceneval y que mostrará la siguiente pantalla de entrada:
1. Seleccione en el examen que va a presentar y luego dé un clic en el botón [Aceptar].

2. Dé un clic en la sede de aplicación que le corresponda y después en el botón [Aceptar].

Haga clic en [Aceptar]
3. Introduzca el folio y contraseña que se le proporcionó. Considere que el sistema distingue mayúsculas y minúsculas. Antes de ingresar su folio, revise que la función *Bloqueo de mayúsculas* no esté activada. Por lo general, en el teclado se enciende una luz para indicarlo. Tenga cuidado de no introducir espacios en blanco, ya que el sistema los considera como un carácter. Haga clic en el botón [Aceptar]

4. Aparecerá una pantalla con las sesiones que comprende su examen, el estado en que se encuentra cada una de ellas y la acción que puede ejecutar. Haga clic en iniciar sesión.
5. Cuando usted haya oprimido Iniciar sesión se desplegará el texto de la Carta de Confidencialidad. Una vez que la haya leído, haga clic sobre el cuadro de Comprendo y acepto lo anteriormente descrito y luego en el botón [continuar]
Cómo responder los reactivos del examen

La pantalla del examen consta de diferentes secciones:

A. Una superior que contiene los botones que permiten terminar o interrumpir la sesión, ver el tiempo que le resta para responder la sesión, monitorear el avance en el examen, resaltar la pregunta y avanzar o retroceder entre los reactivos

B. Una central que muestra el índice de los reactivos contenidos en el examen

C. Una inferior que consta de dos secciones. La izquierda muestra los reactivos o preguntas, en tanto que la derecha contiene las opciones de respuesta.

A partir de un circuito eléctrico con impedancia de $Z = 5 + 8j \, \Omega$, y una tensión eléctrica aplicada de $120 \, (58^\circ) \, V$, el factor de potencia del circuito eléctrico es:
Existen reactivos que tienen un texto, situación o caso que es común a otros reactivos a los que se les denominan multirreactivos. En estas circunstancias, usted podrá visualizar la información completa del caso en la columna izquierda de la pantalla y cada reactivo asociado aparecerá en la sección derecha. Considere que el texto de la columna izquierda se mantendrá mientras se da respuesta a las preguntas asociadas. En cuanto se responda la última del caso y se elija la siguiente pregunta, cambiarán ambas secciones con los textos del caso siguiente y su primera pregunta, o bien con la pregunta y sus opciones de respuesta.

Para responder cada reactivo del examen deberá realizar el siguiente procedimiento:

1. Lea cuidadosamente la pregunta que aparece en la sección izquierda. Si se trata de un caso o multirreactivo, entonces lea el texto de la sección izquierda y cada una de sus preguntas en la sección derecha.
2. Analice las opciones de respuesta.
3. Identifique la respuesta que usted considera correcta y haga clic en el botón redondo que se encuentra a la izquierda de la opción seleccionada. Note cómo el número correspondiente a la pregunta cambia de color en la ventana que aparece en la parte superior derecha de la pantalla: los números de los reactivos que ya respondió se despliegan en color azul, mientras que los aún no contestados están en negro.
Si necesita consultar el **Formulario del examen** deberá oprimir el botón [Material de apoyo] para que se despliegue la información.

A partir de un circuito eléctrico con impedancia de

\[Z = 5 + 8j \ \Omega \]

y una tensión eléctrica aplicada de

\[V = 120 (58^\circ) \ \text{V} \]

el factor de potencia del circuito eléctrico es:

Reactivo simple

1. Lea la pregunta
2. Analice las opciones de respuesta
3. Haga clic sobre la opción correcta

Multirreactivo

1. Lea el contexto del caso y cada una de las preguntas asociadas
Cómo desplazarse dentro del examen

Al igual que en un examen en papel, usted puede revisar y contestar las preguntas de su examen en línea en el orden que le resulte más conveniente, bajo dos tipos de situación:

a) Puede responderlas conforme aparecen; es decir, primero la 1, después la 2 y así sucesivamente hasta llegar al final del examen.

b) Puede ir directamente hacia una pregunta en particular.

A continuación se describen estas dos formas de "navegar" entre las preguntas.

a) Para ver las preguntas en orden predeterminado.

Si desea responder los reactivos en el orden que aparecen, deberá responder la primera pregunta y dar un clic en el botón [Siguiente] que se ubica arriba de la ventana del índice de los reactivos, y se desplegará el siguiente reactivo. Para regresar a la pregunta que acaba de responder, dé un clic sobre el botón [Anterior].
b) Para ir a una pregunta en particular.
La barra que aparece después del texto *Selezione la pregunta* le permite moverse directamente a una pregunta en particular. Para hacerlo, basta con dar un clic sobre el número de la pregunta a la cual desea moverse. Recuerde que usted ya ha respondido las preguntas cuyo número aparece en color azul y le falta por contestar las que están en negro.
Cómo marcar o resaltar una pregunta en la cual tiene duda

En el examen en línea, usted puede marcar una pregunta en la que tenga duda sobre su respuesta y desea revisarla en caso que le sobre tiempo, o bien porque decidió responderla al final. En la pantalla donde se despliega la pregunta que quiere marcar, dé un clic en el texto *Resaltar pregunta* y el número correspondiente aparecerá sombreado en la sección donde se encuentran las preguntas.

Cómo consultar el tiempo disponible

En la parte superior de la pantalla del examen en línea aparece la figura de un reloj seguido de la frase *Ver tiempo*. Al dar un clic en el reloj, se muestra el tiempo que le queda disponible para terminar el examen, como se indica en la figura. Cinco minutos antes de que se agote el tiempo disponible para el examen, el sistema desplegará una ventana con una advertencia. Cuando haya transcurrido el tiempo designado para el examen, el sistema lo cerrará y no podrá continuar respondiendo a las preguntas.
Usted podrá monitorear el avance que lleva en el examen. Dé un clic en el botón [Monitor] y aparecerá una ventana que le permitirá observar el avance.

Cómo interrumpir la sesión del examen

Si usted necesita hacer una pausa para después continuar contestando el examen, deberá dar un clic en el botón [Interrumpir] que aparece en la barra superior de la pantalla y avisar al aplicador para que autorice la interrupción mediante el registro de una clave y contraseña.
El examen se cerrará y el sistema estará advertido de que usted dejará de estar activo, aunque debe tener presente que el tiempo disponible para responder se seguirá consumiendo. Para continuar, tanto usted como el aplicador deberán ingresar nuevamente su clave o folio y su contraseña.

Es importante que usted dé un clic en [Interrumpir] si se separa de la computadora y deja de responder el examen por cualquier motivo. El sistema verifica de manera continua que los sustentantes que han iniciado una sesión se mantengan activos. Si detecta que alguno ha estado inactivo durante 5 minutos, bloquea el folio correspondiente. En este caso, para volver a abrir la sesión, se deberá esperar 5 minutos más.

Tenga cuidado de no dar clic en el botón [Terminar], salvo cuando haya finalizado la sesión del examen. Esta opción le indica al sistema que usted ha concluido la sesión y ya no podrá regresar para revisar o contestar las preguntas.
Cómo terminar la sesión del examen

Una vez que ha finalizado su examen y ya no desea revisar alguna pregunta, siga estos pasos para concluir su sesión y salir de ella:

1. Haga clic en el botón [Terminar] que aparece en el extremo inferior derecho de la pantalla y aparecerá una ventana para confirmar su decisión de concluir definitivamente su sesión. Si aún hay preguntas que usted no ha contestado, aquí se le indicará mediante un mensaje emergente:

2. Dé un clic en el botón [Aceptar] para confirmar que desea terminar la sesión del examen o seleccione [Cancelar] si desea continuar en la sesión. Terminar la sesión implica que usted ha concluido con ella y el sistema cerrará su sesión de manera definitiva. Su folio ya no podrá utilizarse para abrirla de nuevo.
3. Aparecerá una pantalla que le indica que ha finalizado su examen. Dé un clic en el botón [Salir] para cerrarla.
Examen en lápiz y papel

Hoja de respuestas

La hoja de respuestas está diseñada para ser leída por una máquina denominada “lector óptico”. Por esta razón, cualquier doblez, enmendadura o marcas diferentes a las que se solicitan pueden alterar dicha lectura y, por lo tanto, los resultados. **ES IMPORTANTE QUE USTED REVISE LA HOJA DE RESPUESTAS CUANDO SE LA ENTREGUEN Y LA CUIDE MIENTRAS ESTÁ EN SUS MANOS PARA EVITAR QUE ESTÉ EN MALAS CONDICIONES AL MOMENTO DE DEVOLVERLA.**
Cuadernillo de preguntas

El cuadernillo de preguntas consta básicamente de los siguientes elementos: portada, instrucciones y reactivos.

Portada del cuadernillo

A continuación, se presenta un ejemplo de la portada de uno de los cuadernillos del examen, correspondiente a la primera sesión de la aplicación. En la parte inferior, usted deberá anotar su nombre completo y el número de folio que le fue asignado cuando se registró para el EGEL.

| EXAMEN GENERAL PARA EL EGRESO DE LA LICENCIATURA EN INGENIERÍA MECÁNICA ELÉCTRICA |
| EGEL-IME |
| EXAMEN 15 |
| PRIMERA SESIÓN |

En esta sección deberá anotar su nombre completo

<table>
<thead>
<tr>
<th>NOMBRE DEL SUSTENTANTE:</th>
<th>APELLIDO PATerno</th>
<th>APELLIDO MATERNO</th>
<th>NOMBRE(S)</th>
</tr>
</thead>
</table>

En esta sección deberá anotar su número de folio

ADVERTENCIA: Queda estrictamente prohibido cualquier tipo de reproducción, explotación comercial, intercambio o alteración, parcial o total, del contenido de este material impreso.

La violación de esta prohibición se pondrá en conocimiento de las autoridades competentes sin excepción de persona alguna y dará lugar a que se impongan las sanciones penales, civiles o administrativas que procedan, de acuerdo con las leyes, tratados internacionales y el Código Penal Federal.
Instrucciones para contestar la prueba

Para responder el examen se le darán diversas indicaciones, tanto en forma oral como escrita. A continuación se presentan las instrucciones que encontrará al final del cuadernillo de preguntas, las cuales debe leer antes de llevarlas a cabo.

1. Asegúrese de que entiende perfectamente todas las instrucciones. Pregunte al aplicador lo que no le parezca claro.
2. Anote su nombre completo y número de folio en la portada de este cuadernillo.
3. Verifique que la hoja de respuestas corresponda a esta sesión. En ella anote y llene los óvalos con los siguientes datos: número de folio, nombre (iniciando con el apellido paterno), nombre del examen, número de examen e institución donde estudió la licenciatura.
4. Asegúrese de que el número de examen asignado sea el mismo en todas las sesiones.
5. Lea cuidadosamente cada pregunta antes de marcar la respuesta. Recuerde que para cada pregunta hay cuatro opciones de respuesta identificadas con las letras: A), B), C) y D), y sólo una es la correcta.
6. La opción correcta debe marcarla en la hoja de respuestas. Dado que la hoja se procesará por computadora, tome en cuenta lo siguiente:
 a) Utilice solamente lápiz del número 2\(\frac{1}{2}\).
 b) Sólo llene la información que se le solicita. No haga otro tipo de anotaciones.
 c) Llene completamente el óvalo que corresponda a la opción elegida.
 d) **Marque sólo una** opción de respuesta **en cada pregunta.** Si marca más de una, el programa de cómputo la considerará incorrecta.
 e) Si quiere cambiar alguna respuesta, con goma blanda **borre** por completo la marca original y llene totalmente el óvalo de la nueva selección. ¡**No use ningún tipo de corrector!**
 f) Asegúrese de marcar la respuesta en el renglón correspondiente al número de la pregunta.
 g) No maltrate ni doble la hoja de respuestas.
 h) Si necesita hacer cálculos o anotaciones, hágalo en los espacios en blanco del cuadernillo de preguntas.
7. **Administre su tiempo:**
 a) Tome en cuenta que no todas las preguntas requieren del mismo tiempo para responderlas.
 b) Es importante contestar todas las preguntas; sin embargo, no se detenga demasiado en las preguntas que le parezcan particularmente difíciles. Continúe con el examen, o bien, márquelas en este cuadernillo de preguntas y, si tiene tiempo, antes de entregar el examen regrese a ellas.
 c) El examen no tiene preguntas capciosas. Si alguna le resulta particularmente fácil, ¡**no es capciosa!, ¡es fácil!** Responda la y continúe el examen.
 d) No trate de ser de los primeros en terminar. Si otros acaban rápido o antes que usted, no se inquiete ni se presione. Si le sobra tiempo, revise y verifique sus respuestas.
8. Recuerde que no es ético, ni está permitido, intentar copiar las respuestas de otro sustentante o los reactivos del examen; estas conductas serán sancionadas.

9. Durante la sesión de examen sólo puede consultar el Formulario que le proporcionará el Ceneval el día de la aplicación. Puede usar calculadora no programable. Recuerde que no está permitido prestar el formulario ni la calculadora entre los sustentantes.

10. Durante el examen trate de mantenerse tranquilo y relajado. Concentre toda su atención en el contenido del examen. En tanto se distraiga menos y se concentre más en la tarea, tendrá un mejor desempeño.

11. Familiarícese con el examen. Recuerde que hay diferentes tipos de instrucciones para las preguntas.

12. El aplicador no podrá atenderle para resolver dudas relacionadas con el contenido e interpretación de las preguntas del examen.

13. Cuando termine de contestar o finalice el tiempo de la sesión, devuelva este cuadernillo de preguntas y la hoja de respuestas al aplicador.

14. Cuando el aplicador le indique, desprenda el sello del cuadernillo. Revise que no falten páginas y no existan problemas de impresión. De encontrar algún problema de impresión, deberá solicitar la sustitución del material al personal del Ceneval.

Para que su examen sea válido, deberá presentar todas las sesiones que lo integran.

Materiales de consulta permitidos

- **Formulario** proporcionado por el Ceneval el día de la aplicación.
- Se podrá utilizar **calculadora no programable**, la cual no está permitido prestarla entre los sustentantes.

¿Qué tipo de preguntas se incluyen en el examen?

En el examen se utilizan reactivos o preguntas de opción múltiple que contienen fundamentalmente los siguientes dos elementos:

- **La base** es una pregunta, afirmación, enunciado o gráfico acompañado de una instrucción que plantea un problema explícitamente.

- **Las opciones de respuesta** son enunciados, palabras, cifras o combinaciones de números y letras que guardan relación con la base del reactivo, donde sólo una opción es la correcta. Para todas las preguntas del examen siempre se presentarán cuatro opciones de respuesta.

Durante el examen usted encontrará diferentes formas de preguntar. En algunos casos se le hace una pregunta directa, en otros se le pide completar una información, algunos le solicitan elegir un orden determinado, otros requieren de usted la elección de elementos de una lista dada y otros más le piden relacionar columnas. Comprender estos formatos le permitirá llegar mejor preparado al examen. Con el fin de apoyarlo para facilitar su comprensión, a continuación se presentan algunos ejemplos.
1. Preguntas o reactivos de cuestionamiento directo

En este tipo de reactivos el sustentante tiene que seleccionar una de las cuatro opciones de respuestas a partir del criterio o acción que se solicite en el enunciado, afirmativo o interrogativo, que se presenta en la base del reactivo.

Ejemplo correspondiente al área de procesos de producción:

Un sistema electroneumático, que tiene 10 años en funcionamiento, cuenta con componentes que funcionan desde la puesta en marcha del sistema y con componentes que se han reemplazado periódicamente de acuerdo a las especificaciones técnicas del fabricante. ¿Qué tipo de mantenimiento se debe dar a este sistema conforme a lo antes descrito?

A) Preventivo-Correctivo
B) Preventivo-Predictivo
C) Correctivo-Programado predictivo
D) Predictivo-Programado correctivo

Argumentación de las opciones de respuesta

La opción **B** es correcta, ya que como se tiene cierta antigüedad en el sistema, se pueden planear un mantenimiento adecuado y prever fallas.

En las otras opciones al equipo no se le ha hecho ninguna corrección de fallas.

2. Ordenamiento

Este tipo de reactivos demandan el ordenamiento o jerarquización de un listado de elementos de acuerdo con un criterio determinado. La tarea del sustentante consiste en seleccionar la opción en la que aparezcan los elementos en el orden solicitado.
Ejemplo correspondiente al área de **operación de sistemas electromecánicos**:

<table>
<thead>
<tr>
<th>1. Caldera</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Sistema de calentamiento solar</td>
</tr>
<tr>
<td>3. Resistencia eléctrica</td>
</tr>
</tbody>
</table>

A) 1, 2, 3
B) 2, 1, 3
C) 2, 3, 1
D) 3, 1, 2

Argumentación de las opciones de respuesta

La opción B es la respuesta **correcta**, porque un sistema de calentamiento solar permite obtener grandes cantidades de agua caliente con un mínimo costo de operación.

El resto de las opciones son incorrectas ya que no reflejan fielmente el orden que permite cubrir las necesidades consideradas.

3. Clasificación o agrupamiento

En este tipo de reactivos el sustentante tiene que clasificar una serie de hechos, conceptos, fenómenos o procedimientos de acuerdo con un criterio específico solicitado en la base del reactivo.
Ejemplo correspondiente al área de **procesos de producción**:

En una línea de producción automotriz se hace el llenado de una hoja de características de las unidades que son proporcionadas entre estaciones de trabajo subsecuentes. Determine cuáles son transferidas entre éstas.

1. Velocidad máxima
2. Tipos de servicio
3. Precio unitario
4. Cilindrada del motor
5. Tipo de neumático
6. Ubicación de la posición del volante
7. Sistemas de luces - exteriores

A) 1, 2, 3, 7
B) 1, 4, 6, 7
C) 2, 3, 5, 6
D) 4, 5, 6, 7

Argumentación de las opciones de respuesta

La opción **D** es correcta, porque son variables internas del proceso que son secuenciadas para cumplir con las especificaciones del cliente.

Las otras opciones son incorrectas porque 1, 2 y 3 no son variables internas del proceso.
4. Relación de columnas

En este tipo de reactivos hay dos columnas, cada una con contenidos distintos, que el sustentante tiene que relacionar de acuerdo con el criterio especificado en la base del reactivo:

Ejemplo correspondiente al área de mantenimiento de sistemas electromecánicos:

De la siguiente lista de equipos electromecánicos, relacione la función correspondiente.

<table>
<thead>
<tr>
<th>Equipo</th>
<th>Función</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Transformador</td>
<td>a) cambio de tensión</td>
</tr>
<tr>
<td>2. Interruptor</td>
<td>b) protege contra sobretensión</td>
</tr>
<tr>
<td>3. Apartarrayos</td>
<td>c) cambia energía eléctrica en mecánica</td>
</tr>
<tr>
<td>4. Motor eléctrico</td>
<td>d) desconecta</td>
</tr>
</tbody>
</table>

A) 1a, 2d, 3b, 4c
B) 1b, 2c, 3a, 4d
C) 1d, 2b, 3c, 4a
D) 1c, 2a, 3d, 4b

Argumentación de las opciones de respuesta

La opción A es correcta, porque cada equipo corresponde a su función.

Las otras opciones son incorrectas ya que no cumplen cabalmente con la relación correspondiente.

5. Multirreactivo

El multirreactivo es un formato que permite evaluar conocimientos y habilidades interrelacionados, a partir de una temática común en un área de conocimiento determinada o de la descripción de una situación o problema profesional específico. Su estructura presenta primero la descripción de una situación, problema o caso, el cual puede incluir un texto, una tabla, una gráfica, un mapa o un dibujo seguido por una serie de reactivos que deben ser contestados considerando la información presentada inicialmente. Cada pregunta se evalúa de manera independiente. De esta forma, si de una pregunta no se conoce la respuesta, conviene continuar con el resto de los reactivos relacionados con el mismo problema. Los reactivos pertenecientes al multirreactivo pueden adoptar distintos formatos, como los que se han descrito anteriormente.

Ejemplo correspondiente al área de operación de sistemas electromecánicos:
Lea el siguiente caso y conteste las preguntas 1 y 2

Considere el siguiente ciclo de refrigeración por compresión con base en el siguiente diagrama de operación:

1. ¿En qué fase se encuentra el refrigerante a la salida del compresor?

A) Mezcla saturada
B) Vapor saturado
C) Líquido saturado
D) Líquido subenfriado

Argumentación de las opciones de respuesta

La opción **B** es correcta, porque en este estado se puede hacer la compresión de un fluido (vapor).

El resto de las opciones son incorrectas porque: en la zona de mezcla saturada un fluido de trabajo, en este caso refrigerante, no existe como mezcla ya que eso ocurre durante la fase de evaporación para absorber calor de un espacio refrigerado. La fase de líquido saturado se encuentra en la zona del condensador ya que de esta manera se efectúa el rechazo de calor desde el condensador hacia el medio ambiente. En la de líquido subenfriado la zona del diagrama se ubica la región del mismo nombre y por lo tanto corresponderá a la válvula de expansión.
2. ¿En qué fase se encuentra el refrigerante a la salida del compresor?

A) Mezcla saturada
B) Líquido subenfriado
C) Líquido saturado
D) Vapor sobrecalentado

Argumentación de las opciones de respuesta

La opción D es **correcta**, porque en esta etapa del ciclo en el condensador se efectuar el rechazo de calor, al inicio de este proceso el fluido de trabajo esta como vapor sobrecalentado debido a que conforme se rechaza el calor este tiene a cambiar de fase hasta convertirse en líquido saturado.

El resto de las opciones son incorrectas porque la fase de mezcla saturada existe en la zona del evaporador, es decir en la etapa opuesta al condensador. En la fase de líquido subenfriado no existe en este estado tal sustancia debido a las elevadas presiones y temperaturas de trabajo y en la de líquido saturado se encuentra al final del proceso efectuado en el condensador.

Registro para presentar el examen

En cualquiera de las modalidades de registro (ya sea de manera presencial o en línea), es de suma importancia que el sustentante proporcione correctamente todos sus datos, en especial los referidos a la institución donde estudió la licenciatura: **nombre de la institución, campus o plantel y, en particular, la clave**. En la modalidad presencial, la clave se la proporciona la persona con quien realiza el trámite; en el caso de la modalidad virtual, aparece en el portal un catálogo de instituciones y la clave correspondiente. La importancia de este dato radica en que los resultados obtenidos en el examen serán remitidos a la institución que el sustentante señale al momento de registrarse.

Requisitos

Para poder inscribirse al examen es necesario:

1. Haber cubierto el 100% de créditos de su licenciatura o, en su caso, estar cursando el último semestre de la carrera, siempre y cuando la institución formadora así lo estipule.

2. Depositar a nombre del Ceneval, A.C. el pago por la cantidad especificada (consultar precio de los servicios), en la cuenta número: 0446666434 en cualquier sucursal de Bancomer.

3. Responder correcta y completamente el cuestionario de contexto del Ceneval que le será entregado en la sede de registro o en registro en línea.

4. Acudir a la sede de registro que más le convenga y llevar los siguientes documentos:
a) Fotocopia del comprobante oficial que acredite haber concluido el 100% de sus estudios (certificado total de estudios, constancia de terminación o historial académico) y que indique claramente la institución de egreso (incluyendo campus, en su caso), así como la fecha de ingreso y egreso de la licenciatura
b) Fotocopia de identificación oficial (credencial de elector o pasaporte vigente)
c) Dos fotografías tamaño infantil recientes
d) Ficha de depósito con el sello y la ráfaga del banco por la cantidad correspondiente al EGEL o comprobante impreso de transferencia bancaria

Registro en línea

Como parte de los servicios electrónicos que ofrece el Ceneval se encuentra el registro por medio de Internet. Este servicio proporciona un medio ágil y seguro para que los sustentantes ingresen la información necesaria que les permita cubrir y especificar los requerimientos de información suficientes para inscribirse a la aplicación del examen que ofrece el Centro.

El horario de servicio del registro en línea es de lunes a domingo de 6:00 a 22:00 horas (hora del centro del país). El registro será sujeto de actividades de mantenimiento todos los días, de las 22:01 a 5:59 horas.

Cuestionario de contexto

Todo sustentante, al registrarse al examen, deberá llenar el cuestionario de contexto, el cual es un complemento importante de las pruebas de logro, pues busca obtener información que permita explicar los resultados obtenidos por los estudiantes en el EGEL.

El cuestionario de contexto tiene como propósito:

1. Describir a la población evaluada, así como el contexto en el que se desenvuelven.
2. Contextualizar las medidas de logro académico obtenidas por los sustentantes, a partir de ciertas variables.
3. Promover la realización de estudios que den cuenta del desempeño de los sustentantes, identificando factores que afecten o promuevan el aprendizaje.
4. Ubicar las diferencias en el desempeño de los sustentantes y ofrecer a las instituciones educativas información clave que explique estas diferencias, lo cual permitirá contar con elementos para la mejora de la calidad de los servicios educativos que ofrecen.

Número de folio

El número de folio es el código que el Ceneval utiliza para la identificación de los sustentantes en el proceso de aplicación de los exámenes; en el momento en que un sustentante se registra para presentar un examen, se le asigna un número de folio único y personal, que tendrá que registrar en su hoja de respuestas al momento de responder el examen. Este número de folio juega un papel importante en el proceso de aplicación, ya que permite unir los datos del cuestionario de contexto de cada sustentante con sus respuestas del examen, para posteriormente calificar el examen y emitir los resultados. Como puede deducirse, este número es de enorme importancia en el control de la información y es fundamental que el sustentante sea cuidadoso en el manejo de este dato.
Condiciones de aplicación

El examen consta de dos sesiones, cada una de las cuales tendrá una duración máxima de cuatro horas. Cada sesión es conducida y coordinada por personal designado por el Ceneval, identificados como supervisor y aplicador. Ellos serán los responsables de entregar los materiales y dar las instrucciones necesarias.

Distribución de tiempo por sesión

<table>
<thead>
<tr>
<th>Sesión</th>
<th>Duración de la sesión (cuatro horas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primera</td>
<td>9:00 a 13:00 hrs.</td>
</tr>
<tr>
<td>Segunda</td>
<td>16:00 a 20:00 hrs.</td>
</tr>
</tbody>
</table>

Recomendaciones útiles para presentar el examen

1. Procure visitar o ubicar con anticipación el lugar donde se llevará a cabo el examen, identifique las vías de acceso y los medios de transporte que garanticen su llegada a tiempo.
2. Preséntese con puntualidad a todas las sesiones.
3. Descanse bien la víspera de cada sesión del examen.
4. Ingiera alimentos saludables y suficientes.
5. Porte un reloj.
6. Use ropa cómoda.
7. Asegúrese de llevar el comprobante-credencial que le fue entregado en el momento del registro.
8. Lleve dos o tres lápices del número 2 ½, una goma de borrar y un sacapuntas de bolsillo.
9. Llegue por lo menos 30 minutos antes de iniciar el examen, con lo cual evitará presiones y tensiones innecesarias.

Procedimiento por seguir al presentar el examen

1. **Para tener acceso** al examen, antes de iniciar cada sesión se le solicitará el _Pase de Ingreso al Examen General para el Egreso de la Licenciatura_ (talón del Cuestionario de contexto o _Formato de registro por Internet_), junto con una identificación oficial con fotografía y firma. Después de verificar su identidad se le devolverán los documentos.
2. Se realizará un _registro de asistencia_ (en un formato especial previsto para ello). Es importante que _verifique_ que su nombre esté bien escrito y que _firme_ su ingreso en el espacio que corresponde a la _sesión_ que presenta.
3. Con base en el registro de asistencia, _en la primera sesión se le informará el lugar físico que se le ha asignado, lugar que ocupará en todas las sesiones._
4. Escuche con atención las indicaciones del aplicador; él le proporcionará información sobre el inicio y la terminación del examen, así como otras instrucciones importantes. La misión principal del aplicador consiste en _conducir_ las sesiones de examen y _orientar_ a los sustentantes. _Por favor, aclare con el aplicador cualquier duda sobre el procedimiento._
5. En cada sesión se le entregará _un cuadernillo de preguntas_ y _una hoja de respuestas._
6. En cada material deberá anotar sus datos en los espacios destinados para ello, con el fin de identificar debidamente los materiales: número de folio, nombre y número de examen (este último dato se le proporcionará el día del examen).

7. Debe asegurarse de que los datos anotados sean correctos; cualquier equivocación en ellos puede ocasionar errores en el resultado.

Al término de la sesión, los aplicadores darán las instrucciones para la recuperación del material y para salir de manera ordenada.

Al iniciar una nueva sesión deberá asegurarse de anotar correctamente sus datos en el nuevo material.

Reglas durante la administración del instrumento

1. No se permitirá el acceso a ningún sustentante 30 minutos después de iniciada la sesión.

2. No llevar identificación oficial (credencial de IFE, pasaporte o cartilla del servicio militar) es causa suficiente para que no se le permita la realización de su examen.

3. Le recordamos que usted ingresa al área de aplicación con:
 a) Identificación oficial
 b) Talón del Cuestionario de contexto o Formato de registro por Internet
 c) Lápiz, goma, sacapuntas
 d) Calculadora científica no programable

4. No está permitido fumar, comer o ingerir bebidas dentro del lugar de aplicación donde se está resolviendo el examen.

5. Las salidas momentáneas del recinto serán controladas por el supervisor y el aplicador. En ellas no está permitido sacar ningún documento del examen ni materiales que se estén empleando para su realización.

6. Cualquier intento de copiar a otro sustentante o situación de intercambio de respuestas; uso de claves; copia de reactivos a hojas, libros o cualquier otro mecanismo para llevarse el contenido del examen, causará su inmediata suspensión.

Sanciones

LA SUSTRACCIÓN INDEBIDA DE CUALQUIERA DE LOS MATERIALES DEL EGEF O LA INFRAACCIÓN DE ALGUNA DE ESTAS REGLAS ES CAUSA DE SUSPENSIÓN DE SU EXAMEN Y DE CUALQUIER OTRA SANCIÓN DERIVADA DE LA APLICACIÓN DE LAS LEYES DE LA INSTITUCIÓN DE DONDE USTED PROVIENE, EL ESTADO Y LA FEDERACIÓN.
Resultados

Reporte de resultados

A cada persona que sustenta el EGEL-IME se le entrega una constancia/Informe individual como la que se muestra a manera de ejemplo. Mediante ésta se precisan sus resultados sin expresiones aprobatorias o reprobatorias. Al reverso se describen los niveles de desempeño de cada área.
Descripción de los niveles de desempeño

El EGEL-IME permite identificar el nivel de dominio o desempeño logrado por el sustentante con respecto a los conocimientos y habilidades que el Consejo Técnico del Examen ha definido como necesarios para iniciarse eficazmente en el ejercicio profesional. Cuando un sustentante obtiene niveles 2 y 3 en el examen, implica que ha demostrado contar con los conocimientos y habilidades que están siendo evaluados. A continuación se describe cada uno de esos dos niveles.

NIVELES DE DESEMPEÑO POR AREA DEL EXAMEN

Desempeño satisfactorio

- Diseño de elementos y sistemas mecánicos: El sustentante es capaz de resolver problemas básicos de diseño mecánico con base en normas aplicables y con el apoyo de herramientas informáticas y tecnológicas adecuadas.
- Procesos de producción: El sustentante es capaz de identificar el proceso de producción y manufactura, utilizando técnicas y herramientas adecuadas en la selección y operación de maquinaria y equipo necesario para la fabricación de partes y componentes de ingeniería.
- Operación de sistemas electromecánicos: El sustentante es capaz de identificar, definir, comprar y aplicar los elementos necesarios para el desarrollo y operación de sistemas electromecánicos.
- Sistemas de automatización y control: El sustentante es capaz de identificar, seleccionar y operar sistemas de automatización y control, así como determinar las variables y condiciones físicas para medir y controlar en un proceso específico.
- Sistemas eléctricos: El sustentante es capaz de identificar, calcular y seleccionar los componentes de un sistema eléctrico bajo criterios de operación, conforme a la normativa vigente.
- Mantenimiento de sistemas electromecánicos: El sustentante es capaz de identificar, analizar y seleccionar los componentes o equipos de los sistemas electromecánicos y aplicar los programas de mantenimiento pertinentes.

Desempeño sobresaliente

- Diseño de elementos y sistemas mecánicos: Además de los conocimientos o habilidades del nivel de desempeño satisfactorio, el sustentante es capaz de analizar, plantear, solucionar y optimizar problemas de diseño mecánico en términos cualitativos y cuantitativos, con base en aspectos de sustentabilidad.
- Procesos de producción: Además de los conocimientos o habilidades del nivel de desempeño satisfactorio, el sustentante es capaz de proponer y establecer el diseño y desarrollo de procesos de producción y manufactura, considerando aspectos relacionados con la gestión y calidad de procesos y productos, así como el mantenimiento necesario en equipos e instalaciones y la normativa aplicable a los procesos.
- Operación de sistemas electromecánicos: Además de los conocimientos o habilidades del nivel de desempeño satisfactorio, el sustentante es capaz de evaluar y optimizar sistemas para el desarrollo sustentable y la operación de sistemas electromecánicos, aplicando la normativa correspondiente.
- Sistemas de automatización y control: Además de los conocimientos o habilidades del nivel de desempeño satisfactorio, el sustentante es capaz de analizar, evaluar y diseñar sistemas de automatización y control específicos.
- Sistemas eléctricos: Además de los conocimientos o habilidades del nivel de desempeño satisfactorio, el sustentante es capaz de analizar y diseñar los sistemas eléctricos, utilizando los conocimientos y principios para dar solución a problemas específicos.
- Mantenimiento de sistemas electromecánicos: Además de los conocimientos o habilidades del nivel de desempeño satisfactorio, el sustentante es capaz de diagnosticar y diseñar los programas de mantenimiento para componentes o equipos de los sistemas electromecánicos.

Testimonios de desempeño

Dependiendo de sus resultados, usted puede obtener un Testimonio de Desempeño Satisfactorio o Sobresaliente, que se otorgan con base en los lineamientos que fija el Consejo Técnico del EGEL.

Para hacerse acreedor al testimonio que reconoce el nivel de dominio mostrado, usted debe obtener los puntajes requeridos en cada área.

A. Testimonio de Desempeño Satisfactorio (TDS)

El Consejo Técnico del EGEL-IME aprobó otorgar el Testimonio de Desempeño Satisfactorio a los sustentantes que:
• obtengan el nivel de desempeño satisfactorio (DS 1000 a 1149 puntos) o desempeño sobresaliente (DSS 1150 a 1300 puntos), al menos en tres de las seis áreas en DS o DSS.

B. Testimonio de Desempeño Sobresaliente (TDSS)

El Consejo Técnico del EGEL-IME aprobó otorgar el Testimonio de Desempeño Sobresaliente a los sustentantes que:

• obtengan el nivel de desempeño satisfactorio (DS 1000 a 1149 puntos), o desempeño sobresaliente (DSS 1150 a 1300 puntos) en las seis áreas que integran el examen, y que alcancen el nivel de desempeño sobresaliente (DSS 1150 a 1300 puntos) en al menos un área.

| Obteniendo | testimonio | de | desempeño | satisfactorio | o | sobresaliente | del | Ceneval en sí mismo no | condiciona | la | expedición | del | título | ni | de | la | cédula | profesional | por | parte | de | la | institución | de | educación | superior | a la | que | pertenece | el | egresado. | Para | efectos | de | titulación, | cada | centro | educativo | es | responsable | de | establecer | el | nivel | o | resultado | requerido | y | los | trámites | necesarios. |

| El | Centro | Nacional | de | Evaluación | para | la | Educación | Superior, | A.C. | otorga | al | presente | Testimonio | de | Desempeño | Satisfactorio | obtenido | en | el | Examen | General | para | el | Egreso | de | la | Licenciatura | en | conforme | a | los | requisitos | establecidos | por | el | Consejo | Técnico | Valores: | D.F. |
Consulta y entrega

Después de 20 días hábiles, posteriores a la presentación del examen, usted podrá consultar en la página www.ceneval.edu.mx, en el apartado resultados de exámenes. Para ingresar a este apartado se le solicitará su número de folio por lo que deberá tenerlo a la mano.

El reporte de resultados se le entregará en la institución educativa en donde presentó el examen.

Recomendaciones y estrategias de preparación para el examen

La mejor forma de preparación para el examen parte de haber tenido una sólida formación académica y haber trabajado fuertemente durante sus estudios de licenciatura. Sin embargo, las actividades de estudio y repaso que practique a partir de esta Guía constituyen un aspecto importante para que su desempeño en el examen sea exitoso, por lo que se le sugiere considerar las siguientes recomendaciones.

¿Cómo prepararse para el examen?

Prepararse para un examen requiere poner en práctica estrategias que favorezcan recuperar lo aprendido para alcanzar un nivel de rendimiento deseado.

En la medida en que organice sistemáticamente sus actividades de preparación, se le facilitará tomar decisiones sobre las estrategias que puede utilizar para lograr un buen resultado en el examen.

Las estrategias para la preparación del examen que le recomendamos a continuación deben ser utilizadas tan frecuentemente como usted lo requiera, adaptándolas a su estilo y condiciones particulares. Es importante que no se limite a usar únicamente las estrategias fáciles, de naturaleza memorística, ya que ello resultaría insuficiente para resolver el examen. El EGEL no mide la capacidad memorística de la persona, sino su capacidad de razonamiento y de aplicación de los conocimientos adquiridos durante la licenciatura.

El uso de estrategias adecuadas para la preparación del examen debe facilitarle:

- Prestar la atención y la concentración necesarias para consolidar el aprendizaje alcanzado durante su formación escolar.
- Mejorar la comprensión de lo aprendido.
- Recordar rápido y bien lo que ya se sabe para poder aplicarlo a situaciones y problemas diversos.

Una estructuración eficaz de los conocimientos no sólo mejora la comprensión de los materiales extensos y complejos, sino que facilita el recuerdo y la aplicación de lo aprendido para resolver problemas.

Prepárese para una revisión eficiente

Es importante definir un plan general de trabajo, estableciendo un calendario general de sesiones de estudio y repaso. Decida fechas, horarios y lugares para las actividades necesarias de su
preparación, esto le permitirá avanzar con tranquilidad sabiendo que tiene perfilada una ruta que lo preparará para presentar el examen.

Para construir el plan, primeramente se recomienda identificar las **dificultades potenciales** que necesita superar: lo que le falta saber o saber hacer sobre un tema. Dicha identificación implica:

- Revisar la estructura del examen: áreas, subáreas y aspectos por evaluar.
- Señalar aquellas áreas en las que se perciba la falta de preparación y en las que se tengan dudas, carencias o vacíos. Se debe reconocer honestamente aquellos conocimientos teóricos o conceptuales y habilidades que requieran mayor atención.

Para una revisión más efectiva, puede elaborar una tabla donde señale los temas, conceptos, principios y procedimientos que le presenten mayor dificultad; en ella escriba las dificultades correspondientes y especifique en otra columna, con suficiente detalle, las estrategias para revisarlos.

La tabla puede tener tantas columnas o títulos como usted lo requiera, es una herramienta personal que permite detectar y relacionar lo que se sabe, lo que se debe repasar con más dedicación y las mejores formas para resolver la comprensión de dichos aspectos.

Es común que los sustentantes concentren su estudio en temas que desconocen o de los cuales tienen poco dominio. Si bien ésta es una estrategia útil y pertinente, es importante cuidar que no lleve a agotar el tiempo de estudio y, en consecuencia, afectar su desempeño en el examen. Por ello, además de identificar aspectos en los que está débil, es importante considerar los pesos que cada aspecto tiene dentro de la estructura del examen. Distribuya su tiempo de estudio en los aspectos con mayor ponderación.

Selezione la información que debe revisar

Una vez que ha identificado los aspectos que deberá revisar al prepararse para el examen, ya que forman parte de la estructura de la prueba y además tienen un peso considerable, es momento de que seleccione la información específica que habrá de revisar. Para ello:

- Localice las fuentes de información relacionadas con el contenido del examen que debe revisar y seleccione lo más útil.
- Busque esas fuentes de información en sus propios materiales o en la bibliografía sugerida en la Guía. Identifique aquellos aspectos que deberá consultar en otros medios (biblioteca, Internet, etcétera).

Es importante que tenga los materiales de consulta a la mano; reconozca si le hace falta algo y si tiene ubicada toda la información necesaria para el estudio, a fin de no sufrir contratiempos por la ausencia de recursos en el momento de prepararse.

Conviene también tener presente que, aunque se dedique tiempo suficiente para la preparación del examen, es prácticamente imposible y poco útil pretender leer todo lo que no se ha leído en años. Cuando esté revisando los contenidos por evaluar, tenga siempre cerca esta Guía para tomar decisiones respecto del momento adecuado para pasar a otro tema y no agotar su tiempo en una sola área del examen.
Autorregule su avance

Mediante la autoevaluación, planeación y supervisión de lo logrado puede identificar si ha logrado sus metas de aprendizaje. Considere el grado en que se han logrado y, si es el caso, haga modificaciones o incorpore nuevas estrategias. Es importante evaluar tanto lo que aprendió como las maneras en que logró aprender. Si logra identificar estas últimas, puede mejorar sus hábitos de estudio para este momento y para el futuro.

Una preparación consciente y consistente le apoyará en el desarrollo personal y le permitirá construir un repertorio de estrategias eficientes que le harán mejorar su eficiencia en el aprendizaje. Las estrategias que se han presentado de ninguna manera deben concebirse como una lista de habilidades de aprendizaje rígidas, estáticas y mutuamente excluyentes. Utilícelas de acuerdo con sus necesidades.

Recomendaciones finales

Además de seguir las sugerencias arriba enunciadas, debe considerarse la importancia de iniciar el estudio con anticipación y de manera organizada; no es de utilidad hacerlo pocos días antes del examen y en sesiones excesivamente largas. Asimismo, es fundamental descansar y dormir lo suficiente el día anterior al examen; así se tendrán mejores condiciones para la jornada.
Cuerpos colegiados

Consejo Técnico

Representantes de instituciones educativas

M. en C. Sergio Alberto Ramírez Guzmán
Universidad Autónoma de Nuevo León

Ing. Víctor Galindo López
Benemérita Universidad Autónoma de Puebla

M. en C. Benjamín Darío Ramírez Angulo
Instituto Tecnológico de Apizaco

M. en C. Carlos Rodríguez Pérez
Instituto Tecnológico y de Estudios Superiores de Monterrey

M. en I. Baudel Lara Lara
Universidad Autónoma de San Luis Potosí

Ing. Carlos Alfonso Chávez Arias
Universidad Autónoma de Campeche

Ing. Sergio Corona Cárdenas
Universidad de Guadalajara

Mtro. Juan Carlos Anzelmetti Zaragoza
Universidad Veracruzana

Representantes de Colegios y Organizaciones Gremiales

Ing. Armando Martínez Ramírez
Asociación Nacional de Facultades y Escuelas de Ingeniería, A.C.
Comité Académico

Asociación de Ingenieros Universitarios Mecánicos Electricistas (AIUME)
Ing. José Ignacio Villela Zabaleta

Benemérita Universidad Autónoma de Puebla
Dr. Filiberto Candia García
Dr. José Isrrael Rodríguez Mora
Ing. Ulises Salazar Kuri
M. en C. Marco A. Cruz Gómez

Centro Regional de Optimización y Desarrollo de Equipo - Orizaba
Ing. Isidoro Munive González

Colegio de Ingenieros Mecánicos y Electricistas, A. C.
Ing. Francisco Javier Morales Mora

Comisión Federal de Electricidad
Ing. Samuel Reynoso López
Ing. Víctor Benilde Palma y Vivas

Gruppo Collado Stamping Plant
Ing. Gerardo Franco García

Instituto de Investigaciones Eléctricas (IIE)
Ing. Luis Iván Ruiz Flores

Instituto Politécnico Nacional
Dr. Martín Julián Fernández Cueto
Dr. Zoilo Mendoza Núñez
Ing. Gerardo Irving Arjona Ramírez
Ing. Javier Pérez Nájera
Ing. Reyna Cruz Gómez
M. en C. Jesús Daniel Soriano
M. en C. José G. Torres y Ortega
M. en C. Víctor Manuel Eduardo González Hurtado

Instituto Tecnológico de Cancún
Ing. Silverio Hernández Chávez

Instituto Tecnológico de Oaxaca
Ing. Isaias Velásquez Cruz

Instituto Tecnológico de San Luis Potosí
Dr. Juan Arturo Mendoza Razo

Instituto Tecnológico de Tlalnepantla
Dra. María Verónica Estrella Suárez
M. en C. Juan Manuel Galvan Robles

Instituto Tecnológico de Toluca
Ing. Martin García Valdez

Instituto Tecnológico Superior de Atlixco
Ing. Fortino Fernández Muñoz

Instituto Tecnológico Superior de Irapuato
Ing. Brenda Ariadna Miranda Bribiesca
Ing. José Armando Martínez Ramírez
Ing. Luis Nieto
M. en C. David Hernandez Vaca

Instituto Tecnológico y de Estudios Superiores de Monterrey
Ing. Ambrosio Sánchez Albiztegui
Ing. Conrado Rosales Torres
Ing. Jesús Antonio Baez Moreno
Ing. Pablo Eduardo Sánchez López
Ing. Pedro Javier Narváez Castañeda
Ing. Yilan González Chiu
M. en C. Carlos Rodríguez Pérez
Mtro. Abiud Flores Valentín

Tecnológico de Estudios Superiores de Chalco
Ing. Humberto Santiago Cruz
<table>
<thead>
<tr>
<th>Universidad</th>
<th>Directores y Profesores</th>
</tr>
</thead>
</table>
| **Universidad Iberoamericana** | Ing. Jorge Antonio Arturo Hernández Soulayrac
Dr. René Galindo Orozco
Ing. Jesús Florencio Marroquín Tamez
Ing. Eloy Saíz Juárez |
| **Universidad Autónoma de Nuevo León** | Dr. René Galindo Orozco
Ing. Jesús Florencio Marroquín Tamez |
| **Universidad Autónoma de San Luis Potosí** | Dr. Francisco Javier Martínez López
Ing. Aurelio Hernández Rodríguez
Ing. Carlos Adolfo Arriaga Magdaleno
Ing. Eloy Saiz Juárez
Ing. Gerardo Berrones Garduza
Ing. Juan Carlos Arelano González
Ing. Julio Armando Álvarez Tamayo
Ing. Luis Ernesto García Graciano
M. en C. Alejandro Arturo Pérez Villegas
M. en C. Baudel Lara Lara |
| **Universidad Autónoma Metropolitana** | Ing. Ernesto Montes Estrada |
| **Universidad de Guadalajara** | Dr. José de Jesús González Hinojosa
M. en C. Alan Martínez López
M. en C. Miguel Gersayn Ortega Rosales
Mtra. Laura Angélica Zamora Quintana
Mtro. Jesús Guadalupe Martínez Ponce de León |
| **Universidad de Guanajuato** | Dr. Miguel Ángel Gómez Martínez |
| **Universidad de Monterrey** | Ing. José Santiago Cruz Bañuelos |
| **Universidad Tecnológica de Gutiérrez Zamora** | Ing. Víctor Manuel Velásquez del Moral |
| **Universidad Tecnológica de Huejotzingo** | Ing. Ernesto Montes Estrada |
| **Universidad Tecnológica de Matamoros** | Ing. Romualdo Vázquez Aranda |
| **Universidad Tecnológica de Nogales** | Ing. Saúl René Ontiveros Moroyoqui |
| **Universidad Tecnológica de Querétaro** | M. en C. Armando Andreade García |
| **Universidad Tecnológica de Tlaxcala** | Ing. Marco Antonio Parra Flores |
| **Universidad Tecnológica del Sur oeste de Guanajuato** | Ing. Miguel Ángel Ferrer Almaraz |
| **Universidad Veracruzana** | Dr. Jorge Alberto Vélez Enriquez
Ing. Eduardo Reynoso Guillenaun
M. en C. Simón Leal Ortiz |
Esta Guía es un instrumento de apoyo para quienes sustentarán el Examen General para el Egreso de la Licenciatura en Ingeniería Mecánica Eléctrica (EGEL-IME).

La Guía para el sustentante es un documento cuyo contenido está sujeto a revisiones periódicas. Las posibles modificaciones atienden a los aportes y críticas que hagan los miembros de las comunidades académicas de instituciones de educación superior de nuestro país, los usuarios y, fundamentalmente, las orientaciones del Consejo Técnico del examen.

El Ceneval y el Consejo Técnico del EGEL-IME agradecerán todos los comentarios que puedan enriquecer este material. Sírvase dirigirlos a:

Centro Nacional de Evaluación para la Educación Superior, A.C.
Dirección del Área de las Ingenierías y las Tecnologías
Av. Revolución # 1570,
Col. Guadalupe Inn, Delegación Álvaro Obregón,
C.P. 01020, México, D.F.
Tel: 01 (55) 5322-9200 ext. 5107
Fax: 01 (55) 5322-9200 ext. 5220
www.ceneval.edu.mx
arturo.valverde@ceneval.edu.mx

Para cualquier aspecto relacionado con la aplicación de este examen (fechas, sedes, registro y calificaciones), favor de comunicarse al:

Departamento de Información y Atención al Usuario
Larga distancia sin costo 01 800 624 2510
Tel: 01 (55) 3000-8700
Fax: 01 (55) 5322-9200 ext. 2018
www.ceneval.edu.mx
informacion@ceneval.edu.mx
El Centro Nacional de Evaluación para la Educación Superior es una asociación civil sin fines de lucro que quedó formalmente constituida el 28 de abril de 1994, como consta en la escritura pública número 87036 pasada ante la fe del notario 49 del Distrito Federal. Sus órganos de gobierno son la Asamblea General, el Consejo Directivo y la Dirección General. Su máxima autoridad es la Asamblea General, cuya integración se presenta a continuación, según el sector al que pertenecen los asociados, así como los porcentajes que les corresponden en la toma de decisiones:

Asociaciones e instituciones educativas (40%):
Asociación Nacional de Universidades e Instituciones de Educación Superior, A.C. (ANUIES); Federación de Instituciones Mexicanas Particulares de Educación Superior, A.C. (FIMPES); Instituto Politécnico Nacional (IPN); Instituto Tecnológico y de Estudios Superiores de Monterrey (ITESM); Universidad Autónoma del Estado de México (UAEM); Universidad Autónoma de San Luis Potosí (UASLP); Universidad Autónoma de Yucatán (UADY); Universidad Nacional Autónoma de México (UNAM); Universidad Popular Autónoma del Estado de Puebla (UPAEP); Universidad Tecnológica de México (UNITEC).

Asociaciones y colegios de profesionales (20%):
Barra Mexicana Colegio de Abogados, A.C.; Colegio Nacional de Actuarios, A.C.; Colegio Nacional de Psicólogos, A.C.; Federación de Colegios y Asociaciones de Médicos Veterinarios y Zootecnistas de México, A.C.; Instituto Mexicano de Contadores Públicos, A.C.

Organizaciones productivas y sociales (20%):
Academia de Ingeniería, A.C.; Academia Mexicana de Ciencias, A.C.; Academia Nacional de Medicina, A.C.; Fundación ICA, A.C.

Autoridades educativas gubernamentales (20%):
Secretaría de Educación Pública.

- Ceneval, A.C.®, EXANI-I®, EXANI-II® son marcas registradas ante la Secretaría de Comercio y Fomento Industrial con el número 478968 del 29 de julio de 1994. EGEL®, con el número 628837 del 1 de julio de 1999, y EXANI-III®, con el número 628839 del 1 de julio de 1999.
- Inscrito en el Registro Nacional de Instituciones Científicas y Tecnológicas del Consejo Nacional de Ciencia y Tecnología con el número 506 desde el 10 de marzo de 1995.
- Organismo Certificador acreditado por el Consejo de Normalización y Certificación de Competencia Laboral (CONOCER) (1998).
- Miembro de la International Association for Educational Assessment.
- Miembro de la European Association of Institutional Research.
- Miembro del Institutional Management for Higher Education de la OCDE.